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Abstract. By replacing quasiparticles by quasiskyrmions, we calculate the binding energy of the alpha-
particle using the cluster expansion method.

PACS. 12.39.Dc Skyrmions – 21.10.Dr Binding energies and masses – 21.60.Gx Cluster models

1 Introduction

Following an old idea of Skyrme [1] baryons emerge as
chiral solitons in a nonlinear sigma-model when a term
with four derivatives is added to the Lagrangian. Wit-
ten [2] has shown the connection between Skyrme’s model
and QCD in the large-Nc limit and proved Skyrme’s sug-
gestion of identifying the integrated topological current
Wµ with the baryon number. Static properties of the low-
lying baryons [3] as well as the skyrmion-skyrmion interac-
tion [4] have been worked out in detail. These calculations
are based on the most general ansatz for SU(2) field of the
underlying chiral field which arises due to the principle of
maximal symmetry

U(r) = eiτ ·n̂θ(r) , (1)

where n̂(r) is some unit vector and θ(r) is the chiral field
related to the σ and π degrees of freedom. In the case of
the simple hedgehog, n̂ = r\|r| and θ(r) = θ(|r|), i.e., the
isospin points radially in space and the chiral field depends
on one variable, the distance r. Atiyah and Manton [5]
have derived an analytic form of the shape function from
the instanton ansatz for one and two skyrmions:

θ1(r) = π

[
1 −

(
1 +

λ2

r2

)−0.5
]

, (2)

θ2(r) = 2π

[
1 −

(
1 +

λ2

r2

)−0.5
]

, (3)

where λ is equal to L
eFπ

, L being a variational parameter
and e, Fπ are constants. Note that the instanton ansatz
(and this shape function) is only an approximation.

Applying Skyrme’s model to larger nuclei and to nu-
clear matter is an interesting proposition. Recently, there
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has been some progress in understanding the structure
of multi-skyrmions [6,7]. But, unfortunately there is one
piece lacking in all these works, at least to our knowl-
edge, which we next bring to the attention of the reader.
The correlation effect in multi-skyrmions and nuclear mat-
ter calculations has been neglected so far, and the cluster
methods have not been applied to the skyrmions. From our
point of view this is not consistent. It is well known that
even very straightforward approximations based on the in-
clusion of two-body correlations in various ways, lead to
binding energies accurate by comparison with other mod-
els [8]. Investigation of the approximate behavior of corre-
lated skyrmions, is a motivation for this work. Although
the instanton ansatz is a bad approximation to the true
minimum energy solution which only has axial symmetry
for B = 2 [9], nonetheless it is sufficiently accurate for our
purposes.

2 Cluster expansion and quasiskyrmions

There have been many attempts lately to calculated the
properties of light atomic nuclei, as for example 4He, by
the various techniques of modern microscopic quantum
many-body theory. The approach employed here is based
on the very well-known variational cluster expansion tech-
nique of Clark and Westhaus [10]. Particles are replaced by
correlated quasiparticles (hereafter quasiskyrmions) and
the use of a very simplified Jastrow parametrization of
the two-body correlation function:

fJ(r) = 1 − D exp
(−r2

C2

)
, (4)

where D and C are variational parameters. Moreover,
since the cluster expansion is written as a power of the
correlation function, for the range of inter-skyrmion po-
tentials considered here, calculations are truncated at the
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lowest possible two-body level, such that

E =
∑
i>j

〈ij|�
2

m
[∇f(r)]2 + f2(r)V (r)|ij〉 + TF , (5)

where TF, V (r) are, respectively, the Fermi kinetic energy
and a nonsingular effective potential applied between the
quasiparticles. The most general form of the Slater deter-
minant |ij〉 is

|ij〉 =
∑

(1/2σ1l1ml1 |j1 m1)(1/2σ2l2ml2 |j2 m2)

× (1/2σ11/2σ2|SMS )(1/2τ11/2τ2|T MT )
×Ψn1l1ml1

(r1)Ψn2l2ml2
(r2)χSMS

τTMT
, (6)

where

[Ψn1l1(r1)Ψn2l2(r2)]λ =∑
nlNL

〈nlNLλ|n1l1n2l2λ〉[Ψnl(rint)ΨNL(RCM )]λ; (7)

the coefficients in eq. (7) are the so-called Brody-
Moshinsky brackets and Ψ(r) is the variational wave func-
tion in Jastrow-theory, which is taken as

ΨJ(rint) =
∏
i>j

fJ (rint)Φ , (8)

where Φ denotes Φ(rint). Since
∫

Ψ2
NL(RCM )d3RCM = 1,

we separate the two-particle cluster’s centre of mass. Then
we assume a skyrmion density which is taken as the square
of wave function ΨJ(rint) and define

Φ∗Φ = 4πr2W0(r) , (9)

where W0(r) is the topological charge density [3]:

W0(r) =
−1
2π2

sin2 θ(r)
r2

dθ(r)
dr

. (10)

We plug in this expression the approximate Atiyah-
Manton baryon density profile θ(r) (for the two-skyrmion
system) instead of the two-skyrmion wave function. This
procedure can be taken as an axiom. The merit for this
choice lies in the fact that the derived wave function ΨJ(r)
is normalizable. The baryon number fractionalisation of
the model is left for a future publication.

3 Calculations and results

The procedure we develop in here is intermediate between
the more formal Skyrme model studies and the traditional
nuclear-physics approaches. The aim has been to replace
the skyrmion-skyrmion interaction by phenomenological
NN potentials and approach the data from that stand-
point. We represent a two-nucleon cluster by a matter
density of correlated skyrmions of baryon number 2 with
approximate two-skyrmion chiral angle and use effective
nuclear potentials B1 [11], S3 [12] and M.T [13] for the

Table 1. Calculated values of the binding energies of the
alpha-particle (third row) and comparison with two nucleonic
systems calculations (first and second row). All of these mag-
nitudes are given in MeV.

Potentials B1 S3 M.T

Jastrow −36.44 −24.29 −29.48

LTICC −37.8 −25.29 −26.77

Correlated
quasiskyrmions −25.43 −19.35 −22.42

inter-skyrmion interaction. Our procedure may seem awk-
ward since we have used a skyrmion profile for the square
of the wave function and effective nuclear potential for
the interaction, a scheme not fully justified. However, we
have done so only for comparing the obtained density dis-
tribution from Skyrme’s picture with that of other nu-
clear theory methods. (The phenomenology of an actual
4-skyrmions particle is left for a future publication.)

In a recent publication Irwin [7], using the zero-mode
quantization, has shown that the ground state for the
B = 4 skyrmion has spin and isospin zero and positive
parity, a feature which we used in our calculations. For
obtaining TF, we assumed that the Fermi kinetic energy
is associated with the vibration of the B = 1 skyrmions
and that noninteracting skyrmions oscillate harmonically
away from their equilbrium position parmetrized by con-
stant L. In 3-dimensional space the quantization of the
Skyrme Lagrangian modes leads to E = (n + 1

2 )�ω [14].
Then a simple calculation for approximating the Fermi
kinetic energy yields

TF = 0.75
�

2L−2

m
(11)

(where �
2

m is equal to 41.5 MeV (fm)2). This is also in
agreement with the work of Irwin which shows that the
vibrational states are important and have an energy of the
same order as the pure rotational state.

We proceed to calculate the binding energy of the
alpha-particle by means of a variational principle implying
minimization with respect to the variational parameters:
L, C, and D. The results are shown in table 1, where we
compare the binding energies with two traditional nuclear
theory methods: i) an ancient method which consists of
a simple variational calculations for a trial Jastrow wave
function and ii) a more accurate method which assumes
that the correlated wave function of a many-particle sys-
tem is decomposed in terms of the amplitude for exciting
clusters of a finite number of particles [15]. It is clear that
the approach introduced in this work is worst than the
other methods, since the skyrmions are classical approx-
imations describing the nucleons. It is apparent that the
behavior of the skyrmion profile is not bad for the strong
S3 and M.T potentials, while for the soft B1 potential,
since the correlation effects tend to zero, the resutls are
poor. We conclude from the analysis that, if the skyrmion
profile is to represent the nucleon density as in the
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approach above, the internuclear potential between cor-
related skyrmions has to be strong.

In summary: skyrmions, which are basically free at
large separations, become strongly correlated when they
are brought together. Therefore cluster methods should be
employed in the study of skyrmion physics, i.e., in the de-
scription of nuclear physics in the language of the large-Nc

QCD.
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